
You Only Look Once:

A comparative study for real-time object detection

Shrey Vaghela, Vyom Jain

Institute of Technology, Nirma University

Abstract

 This paper is an attempt to compare and

study state-of-the-art models used for real-time object

detection. With the special focus on YOLO [3][4][5]

models which have evolved over the span of 3 years,

we will study, compare them with other algorithms

like the SqueezeDet [2], FastYOLO [6] and

VideoYOLO [7]. Understanding the differences and

the similarities between these architectures will help

us to have a deep understanding of the state of

object-detection.

We will witness how the models have

changed thus far and how other researchers

influence others to create something new or to

improve the existing one. We will also this through a

timeline starting from 2015, with Faster R-CNN [9],

going all the way to 2018, with the latest

improvement YOLOv3 [3].

1. Introduction

 With the rapid development in architectures

for CNN from AlexNet, to VGG Net and then to

ResNet, there is the great improvement in the

application of computer vision. Different applications

such as image classification, object detection,

segmentation etc. can be implemented with higher

efficiency. Object detection being one of many

applications is used to locate and label different

multiple objects in the images. It is not only restricted

to images but can also be applied to videos and for

real-time object detection.

Most of the application of detection

demands it to be real time. Current real-time state-of-

the-art technologies such as YOLO and SSD are

based on R-CNN, a milestone for object detection in

images [1]. The methodology of detecting objects

differs in YOLO and its previous architectures. For

real-time detection, the algorithm not only has to be

faster but also efficient enough in order to fulfil the

requirements for applications such as self-driving

cars, smart assistive devices or robotic systems. The

trade-off between the speed and accuracy should be

taken care according to the application and platform

[8].

We can always trade-off between accuracy and speed

by just changing the model size without even

retraining it. We can achieve 45 fps with object

detection on real-world entities, also one can attain

155 fps but is less accurate. Also, many applications

such as embedded systems require real-time object

detection even with low computation power and

memory [6]. Thus, an algorithm with fewer

parameters needs to be developed.

2. Various attempts

 Many methods including R-CNN, Fast R-

CNN etc. exists which uses CNN but fails to perform

well due to their mechanism of cropping the part of

an image with or without feature extractor [8]. Thus,

it became important to find a new approach for real-

time object detection.

2.1 YOLO

YOLO is short for You Only Look Once. As

the name suggests it just sees or more technically

runs the whole CNN only once. YOLO then after

passing the whole image through network predicts

the boundary box and then calculates the probability

for the class label. It does detection by regression [4].

Unlike R-CNN, Faster R-CNN where region

proposal networks are first used to propose the

bounding boxes followed by running the classifier on

top of the proposed region in an image, YOLO

represents object detection as a regression problem.

All of the processes take place in a single pass of the

convolutional neural network predicting multiple

bounding boxes and class probabilities

simultaneously. In YOLO, the network sees an image

as a whole. As it sees the larger context, the number

of background errors reduce.

The algorithm divides the image into grids

and each grid predicts bounding boxes and

confidence of that box whether it contains object or

not. The confidence is calculated by Pr (Object) *

IOU. Instead of four coordinates of the bounding box,

it predicts the centre, width of the bounding box, the

height of the bounding box and a confidence score

[4]. Along with these it also predicts Pr (Class

Object) as conditional class probabilities.

However, it is fast but the disadvantage

because of this mechanism is that there is an increase

in the error for localization. It struggles to identify

small objects in a group. Also, images with new

aspect ratio make it difficult to detect the same

objects [4].

2.2 YOLO 9000

 YOLO was already very fast and accurate

but had some shortcomings. These shortcomings and

instabilities convinced them to write a paper which

was a monumental improvement over YOLO.

● YOLO makes a significant number of

localization errors compared to faster R-

CNN [9]

● Lower recall compared to region proposal-

based algorithms [10]

● Anchor boxes dimensions are hand-picked

● Model instability, problem with anchor

boxes. Comes from predicting (x, y)

locations from the box.

● Fixed to only single input dimension of

448x448.

● Uses a custom model for classification based

on GoogLeNet [11], but has slightly worse

accuracy than VGG-16[12].

The architecture was improved to

accommodate 9000 classes and was able to detect

even those objects which didn't have labelled data.

Moreover, dropout normalization was completely

replaced by batch normalization which improved the

accuracy by 2%. The model was trained for high-

resolution images for 10 epochs which improved it

further by 4%. Prediction of bounding boxes is

redefined by predicting offsets by convolution layers

instead of handpicked ones. Uses an odd number of

locations in feature maps so that bigger objects which

tend to occupy the centre are classified for only one

centre pixel, not the surrounding four.

Anchor box sizes are no longer a

hyperparameter but are learned using k-means

clustering. Takes inspiration from ResNet [13] by

adding passthrough features of 26x26 along with the

usual 13x13 features. Improved accuracy by 1%. The

model has been made robust to different image

resolutions by changing the resolution in every few

epochs, going from 320x320 to 608x608. Uses

DarkNet-19 instead of the one used in YOLO [4].

 To make the model more robust, the

detection and classification datasets were mixed and

losses were handled differently for them. The data

used is multi labelled which doesn’t assume mutual

exclusion. This is done by not using SoftMax.

Labelling is done by using WordNet, which is a

graph. The model uses only a hierarchical tree from

the concepts of ImageNet [15].

2.3 YOLOv3

 YOLOv3 is regarded as an upgrade to the

previous version YOLO 9000. Joseph Redmon and

Ali Farhadi themselves call it not a research paper but

a TECH REPORT. This time they take inspiration

from the state of the art and common knowledge to

improve the model.

 Logistic regression is used to predict the

objectness score of each bounding box. The value is 1

for the block which has the maximum overlap with

the ground truth. This is done without using SoftMax

to incorporate multilabel data. Binary cross-entropy

is used during training. This helps in datasets like the

Open Images dataset which has overlapping labels

like person and woman.

 Boxes are predicted at 3 different scales.

Several convolutional layers are placed upon the

basic feature extractor to get a 3-D tensor encoding

bounding box, objectness and class prediction. To get

more semantic details the paper highlights the use of

features from 2 layers before and upscaling them by

2x. Also, features from other previous layers are

concatenated and then convoluted to get finer-grained

features from the earlier feature maps.

A new feature extractor is used. Instead of

DarkNet-19 used in YOLO 9000[5], they use a

hybrid of DarkNet-19 and ResNet. This network has

53 convolutional layers hence the name DarkNet-53.

This is more powerful than DarkNet-19 and more

efficient than ResNet-101 or ResNet-152. Network

structure better utilizes the GPU. It is better for

detecting smaller objects. The earlier YOLOs

struggled with small objects. The trend is reversed in

this one, YOLOv3 seems to struggle with medium to

large size objects.

2.4 Fast YOLO

 YOLOv2 being state of the art deep neural

network achieves great performance in terms of speed

and accuracy with powerful GPUs. But it still

remains challenging for YOLOv2 to give the

performance in a video for embedded systems with

limited computational power and memory. Motion

adaptive method has been introduced to Fast YOLO

to reduce computational power [6]. It includes 2

steps:

1) optimization of YOLOv2 and

2) motion-adaptive inference.

For each video frame, an image stack is

passed to 1x1 convolutional layer for calculating

motion probability. The paper discusses the

evolutionary deep intelligence framework where

probabilistic DNA of an ancestor network and

environmental factors are taken into consideration to

produce new deep neural network [6]. The

environmental factors are used such that the number

of parameters is reduced and YOLOv2 is optimized.

All the frames in the video do not require the

computation. Thus, if the frame is unique with

Paper Architecture Year Distinguishing feature

YOLO Based on GoogLeNet 2016 First attempt towards Fast real-time object detection

YOLO 9000 DarkNet-19 2017 Incorporated 9000 classes

YOLO v3 DarkNet-53 2018 Better for smaller images and more accurate

FastYOLO 1x1 conv layer for motion probability

map.

2017 Better for embedded systems

SqueezeDet ConvDet is a layer with W filter*H filter

convolution and output size

of k*(5+C)

2017 Conv layers are used to compute bounding boxes

and class probabilities. Small, low powered

VideoYOLO 8 Conv3 layers, 5 MaxPool layers, 2 fc

layers and 1 SoftMax layer

2018 Sampling from distinct distributed frames gives

larger context of the video

Table 1: A comparison of all the models discussed in this paper. At a glance we can see the advancements made in the

field of object detection over the years

reference to the reference frame then with the help of

the motion probability map we compute updated

class probabilities and that unique frame now

becomes our reference frame for future video frames.

Using this approach one can increase the

speed of object detection by approximately 3.3 times

and reduce the deep inference by 38.13% [6].

2.5 SqueezeDet

The network named SqueezeDet is inspired

by YOLO for its single stage detection pipeline. At

the initial stage of the pipeline, low resolution and

high dimensional feature map is extracted and fed to

ConvDet [2]. ConvDet is a convolutional layer,

which computes bounding boxes and its confidence

score along with conditional class probability:

max Pr (class | Object) * Pr (Object) * IOU

We keep top N bounding boxes and use

Non-Maximum Sequence to filter and get final

detection. With the help of ConvDet, one can propose

thousands of region proposals with lesser parameters

in comparison to YOLO [4]. ConvDet works by

using a sliding window approach. Reference boxes

known as anchors with pre-selected shapes are used

to compute four coordinates of the predicted

bounding boxes. The ConvDet is similar to the last

layer of Region proposal network in Faster R-CNN.

Both of them majorly defers in implementing the

classifiers where ConvDet implements CNN and

Faster R-CNN implements Fully Connected Layer

where RPN is only responsible for generating box

proposals.

2.6 VideoYOLO

 Being inspired by the paper of Joseph

Redmon on YOLO where object detection and

classification takes place in a single forward pass on

full images, this paper discusses the implementation

of action recognition by learning temporal

characteristics in a single pass. Video YOLO captures

overall temporal information spread across the whole

video [7]. This capturing of subsets of frames across

the video can be done by 1) even sampling or 2)

random sampling.

Si = 1 + ⌊N/T⌋ * i, (1)

Si = random (⌊N/T⌋) +⌊N/T⌋ * i, (2)

Here, N = length of the video, T = number of frames

to be sampled. Random sampling is done by dividing

the video into T intervals uniformly. Then, from each

interval, one frame is selected randomly with the help

of random(⌊N/T⌋). These two sampling methods are

used to make the proxy video which is then fed to 3D

CNN for learning the appearance and global temporal

information.

3D-CNN used has 11 layers including 8

convolutional layers followed by 2 FCL and a

SoftMax layer. Even though different proxy videos

might have different lengths, but keeping the same

number of parameters makes it easier to compare

different networks. 3D-CNN can learn even with

fewer frames. Also, the efficiency increases as the

number of frames during sampling increases [7].

3. Conclusion

 Object detection is one of the applications of

Machine Learning which is being used extensively in

the industry. With changing times and datasets, we

need the models to be more robust, accurate and

faster at the same time. Advances in this field have

been rapid as we have seen in this paper. Right after

the publication of Faster R-CNN [9] and YOLO [4],

many papers have been published which are either

improvement of these or are a new approach for

object detection. This paper is an attempt to study and

compare all the major papers which were published

in this field. This has helped us to understand object

detection in a wholesome sense which is pivotal

before applying any technique to solve a real-world

problem.

References

[1] Du, J., 2018, April. Understanding of Object Detection

Based on CNN Family and YOLO. In Journal of Physics:

Conference Series (Vol. 1004, No. 1, p. 012029). IOP

Publishing.

[2] Wu, B., Iandola, F.N., Jin, P.H. and Keutzer, K., 2017,

July. SqueezeDet: Unified, Small, Low Power Fully

Convolutional Neural Networks for Real-Time Object

Detection for Autonomous Driving. In CVPR Workshops

(pp. 446-454).

[3] Redmon, J. and Farhadi, A., 2018. Yolov3: An

incremental improvement. arXiv preprint

arXiv:1804.02767.

[4] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A.,

2016. You only look once: Unified, real-time object

detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 779-788).

[5] Redmon, J. and Farhadi, A., 2017. YOLO9000: better,

faster, stronger. arXiv preprint.

[6] Shafiee, M.J., Chywl, B., Li, F. and Wong, A., 2017. Fast

YOLO: A Fast You Only Look Once System for Real-

time Embedded Object Detection in Video. arXiv preprint

arXiv:1709.05943.

[7] Jing, L., Yang, X. and Tian, Y., 2018. Video you only

look once: Overall temporal convolutions for action

recognition. Journal of Visual Communication and Image

Representation, 52, pp.58-65.

[8] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,

Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S.

and Murphy, K., 2017, July. Speed/accuracy trade-offs for

modern convolutional object detectors. In IEEE CVPR

(Vol. 4).

[9] Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-

CNN: Towards real-time object detection with region

proposal networks. In Advances in neural information

processing systems (pp. 91-99).

[10] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-CNN:

Towards real-time object detection with region proposal

networks. arXiv preprint arXiv:1506.01497, 2015.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014

[12] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. arXiv preprint

arXiv:1512.03385, 2015

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Dollar, and C. L. Zitnick. Microsoft coco:

Common objects in context. In European Conference on

Computer Vision, pages 740–755. Springer, 2014

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.

C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 2015

