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Abstract 

 This paper is an attempt to compare and 

study state-of-the-art models used for real-time object 

detection. With the special focus on YOLO [3][4][5] 

models which have evolved over the span of 3 years, 

we will study, compare them with other algorithms 

like the SqueezeDet [2], FastYOLO [6] and 

VideoYOLO [7]. Understanding the differences and 

the similarities between these architectures will help 

us to have a deep understanding of the state of 

object-detection. 

We will witness how the models have 

changed thus far and how other researchers 

influence others to create something new or to 

improve the existing one. We will also this through a 

timeline starting from 2015, with Faster R-CNN [9], 

going all the way to 2018, with the latest 

improvement YOLOv3 [3]. 

1. Introduction 

  With the rapid development in architectures 

for CNN from AlexNet, to VGG Net and then to 

ResNet, there is the great improvement in the 

application of computer vision. Different applications 

such as image classification, object detection, 

segmentation etc. can be implemented with higher 

efficiency. Object detection being one of many 

applications is used to locate and label different 

multiple objects in the images. It is not only restricted 

to images but can also be applied to videos and for 

real-time object detection. 

Most of the application of detection 

demands it to be real time. Current real-time state-of- 

the-art technologies such as YOLO and SSD are 

based on R-CNN, a milestone for object detection in 

images [1]. The methodology of detecting objects 

differs in YOLO and its previous architectures. For 

real-time detection, the algorithm not only has to be 

faster but also efficient enough in order to fulfil the 

requirements for applications such as self-driving 

cars, smart assistive devices or robotic systems. The 

trade-off between the speed and accuracy should be 

taken care according to the application and platform 

[8]. 

We can always trade-off between accuracy and speed 

by just changing the model size without even 

retraining it. We can achieve 45 fps with object 

detection on real-world entities, also one can attain 

155 fps but is less accurate. Also, many applications 

such as embedded systems require real-time object 

detection even with low computation power and 

memory [6]. Thus, an algorithm with fewer 

parameters needs to be developed. 

2. Various attempts  

 Many methods including R-CNN, Fast R-

CNN etc. exists which uses CNN but fails to perform 

well due to their mechanism of cropping the part of 

an image with or without feature extractor [8]. Thus, 

it became important to find a new approach for real-

time object detection. 

2.1 YOLO  

YOLO is short for You Only Look Once. As 

the name suggests it just sees or more technically 

runs the whole CNN only once. YOLO then after 

passing the whole image through network predicts 

the boundary box and then calculates the probability 

for the class label. It does detection by regression [4]. 



Unlike R-CNN, Faster R-CNN where region 

proposal networks are first used to propose the 

bounding boxes followed by running the classifier on 

top of the proposed region in an image, YOLO 

represents object detection as a regression problem. 

All of the processes take place in a single pass of the 

convolutional neural network predicting multiple 

bounding boxes and class probabilities 

simultaneously. In YOLO, the network sees an image 

as a whole. As it sees the larger context, the number 

of background errors reduce. 

The algorithm divides the image into grids 

and each grid predicts bounding boxes and 

confidence of that box whether it contains object or 

not. The confidence is calculated by Pr (Object) * 

IOU. Instead of four coordinates of the bounding box, 

it predicts the centre, width of the bounding box, the 

height of the bounding box and a confidence score 

[4]. Along with these it also predicts Pr (Class 

Object) as conditional class probabilities. 

However, it is fast but the disadvantage 

because of this mechanism is that there is an increase 

in the error for localization. It struggles to identify 

small objects in a group. Also, images with new 

aspect ratio make it difficult to detect the same 

objects [4]. 

2.2 YOLO 9000 

 YOLO was already very fast and accurate 

but had some shortcomings. These shortcomings and 

instabilities convinced them to write a paper which 

was a monumental improvement over YOLO. 

● YOLO makes a significant number of 

localization errors compared to faster R-

CNN [9] 

● Lower recall compared to region proposal-

based algorithms [10] 

● Anchor boxes dimensions are hand-picked 

● Model instability, problem with anchor 

boxes. Comes from predicting (x, y) 

locations from the box. 

● Fixed to only single input dimension of 

448x448. 

● Uses a custom model for classification based 

on GoogLeNet [11], but has slightly worse 

accuracy than VGG-16[12]. 

The architecture was improved to 

accommodate 9000 classes and was able to detect 

even those objects which didn't have labelled data. 

Moreover, dropout normalization was completely 

replaced by batch normalization which improved the 

accuracy by 2%. The model was trained for high-

resolution images for 10 epochs which improved it 

further by 4%. Prediction of bounding boxes is 

redefined by predicting offsets by convolution layers 

instead of handpicked ones. Uses an odd number of 

locations in feature maps so that bigger objects which 

tend to occupy the centre are classified for only one 

centre pixel, not the surrounding four. 

Anchor box sizes are no longer a 

hyperparameter but are learned using k-means 

clustering. Takes inspiration from ResNet [13] by 

adding passthrough features of 26x26 along with the 

usual 13x13 features. Improved accuracy by 1%. The 

model has been made robust to different image 

resolutions by changing the resolution in every few 

epochs, going from 320x320 to 608x608. Uses 

DarkNet-19 instead of the one used in YOLO [4].   

 To make the model more robust, the 

detection and classification datasets were mixed and 

losses were handled differently for them. The data 

used is multi labelled which doesn’t assume mutual 

exclusion. This is done by not using SoftMax. 

Labelling is done by using WordNet, which is a 

graph. The model uses only a hierarchical tree from 

the concepts of ImageNet [15]. 

 



2.3 YOLOv3 

 YOLOv3 is regarded as an upgrade to the 

previous version YOLO 9000. Joseph Redmon and 

Ali Farhadi themselves call it not a research paper but 

a TECH REPORT. This time they take inspiration 

from the state of the art and common knowledge to 

improve the model. 

 Logistic regression is used to predict the 

objectness score of each bounding box. The value is 1 

for the block which has the maximum overlap with 

the ground truth. This is done without using SoftMax 

to incorporate multilabel data. Binary cross-entropy 

is used during training. This helps in datasets like the 

Open Images dataset which has overlapping labels 

like person and woman.  

  Boxes are predicted at 3 different scales. 

Several convolutional layers are placed upon the 

basic feature extractor to get a 3-D tensor encoding 

bounding box, objectness and class prediction. To get 

more semantic details the paper highlights the use of 

features from 2 layers before and upscaling them by 

2x. Also, features from other previous layers are 

concatenated and then convoluted to get finer-grained 

features from the earlier feature maps.  

A new feature extractor is used. Instead of 

DarkNet-19 used in YOLO 9000[5], they use a 

hybrid of DarkNet-19 and ResNet. This network has 

53 convolutional layers hence the name DarkNet-53. 

This is more powerful than DarkNet-19 and more 

efficient than ResNet-101 or ResNet-152. Network 

structure better utilizes the GPU. It is better for 

detecting smaller objects. The earlier YOLOs 

struggled with small objects. The trend is reversed in 

this one, YOLOv3 seems to struggle with medium to 

large size objects.  

2.4 Fast YOLO 

 YOLOv2 being state of the art deep neural 

network achieves great performance in terms of speed 

and accuracy with powerful GPUs. But it still 

remains challenging for YOLOv2 to give the 

performance in a video for embedded systems with 

limited computational power and memory. Motion 

adaptive method has been introduced to Fast YOLO 

to reduce computational power [6]. It includes 2 

steps:  

1) optimization of YOLOv2 and  

2) motion-adaptive inference.  

For each video frame, an image stack is 

passed to 1x1 convolutional layer for calculating 

motion probability. The paper discusses the 

evolutionary deep intelligence framework where 

probabilistic DNA of an ancestor network and 

environmental factors are taken into consideration to 

produce new deep neural network [6]. The 

environmental factors are used such that the number 

of parameters is reduced and YOLOv2 is optimized. 

All the frames in the video do not require the 

computation. Thus, if the frame is unique with 

Paper Architecture Year Distinguishing feature 

YOLO Based on GoogLeNet 2016 First attempt towards Fast real-time object detection 

YOLO 9000 DarkNet-19 2017 Incorporated 9000 classes 

YOLO v3 DarkNet-53 2018 Better for smaller images and more accurate 

FastYOLO 1x1 conv layer for motion probability 

map. 

2017 Better for embedded systems 

SqueezeDet ConvDet is a layer with W filter*H filter 

convolution and output size 

of   k*(5+C) 

2017 Conv layers are used to compute bounding boxes 

and class probabilities. Small, low powered  

VideoYOLO 8 Conv3 layers, 5 MaxPool layers, 2 fc 

layers and 1 SoftMax layer 

2018 Sampling from distinct distributed frames gives 

larger context of the video 

Table 1: A comparison of all the models discussed in this paper. At a glance we can see the advancements made in the 

field of object detection over the years 



reference to the reference frame then with the help of 

the motion probability map we compute updated 

class probabilities and that unique frame now 

becomes our reference frame for future video frames.  

Using this approach one can increase the 

speed of object detection by approximately 3.3 times 

and reduce the deep inference by 38.13% [6]. 

2.5 SqueezeDet 

The network named SqueezeDet is inspired 

by YOLO for its single stage detection pipeline. At 

the initial stage of the pipeline, low resolution and 

high dimensional feature map is extracted and fed to 

ConvDet [2]. ConvDet is a convolutional layer, 

which computes bounding boxes and its confidence 

score along with conditional class probability:  

max Pr (class | Object) * Pr (Object) * IOU  

We keep top N bounding boxes and use 

Non-Maximum Sequence to filter and get final 

detection. With the help of ConvDet, one can propose 

thousands of region proposals with lesser parameters 

in comparison to YOLO [4]. ConvDet works by 

using a sliding window approach. Reference boxes 

known as anchors with pre-selected shapes are used 

to compute four coordinates of the predicted 

bounding boxes. The ConvDet is similar to the last 

layer of Region proposal network in Faster R-CNN. 

Both of them majorly defers in implementing the 

classifiers where ConvDet implements CNN and 

Faster R-CNN implements Fully Connected Layer 

where RPN is only responsible for generating box 

proposals.  

2.6 VideoYOLO 

  Being inspired by the paper of Joseph 

Redmon on YOLO where object detection and 

classification takes place in a single forward pass on 

full images, this paper discusses the implementation 

of action recognition by learning temporal  

characteristics in a single pass. Video YOLO captures 

overall temporal information spread across the whole 

video [7]. This capturing of subsets of frames across 

the video can be done by 1) even sampling or 2) 

random sampling.   

Si = 1 + ⌊N/T⌋ * i,  (1) 

Si = random (⌊N/T⌋) +⌊N/T⌋ * i,  (2) 

Here, N = length of the video, T = number of frames 

to be sampled. Random sampling is done by dividing 

the video into T intervals uniformly. Then, from each 

interval, one frame is selected randomly with the help 

of random(⌊N/T⌋). These two sampling methods are 

used to make the proxy video which is then fed to 3D 

CNN for learning the appearance and global temporal 

information. 

3D-CNN used has 11 layers including 8 

convolutional layers followed by 2 FCL and a 

SoftMax layer. Even though different proxy videos 

might have different lengths, but keeping the same 

number of parameters makes it easier to compare 

different networks. 3D-CNN can learn even with 

fewer frames. Also, the efficiency increases as the 

number of frames during sampling increases [7].     

3. Conclusion 

 Object detection is one of the applications of 

Machine Learning which is being used extensively in 

the industry. With changing times and datasets, we 

need the models to be more robust, accurate and 

faster at the same time. Advances in this field have 

been rapid as we have seen in this paper. Right after 

the publication of Faster R-CNN [9] and YOLO [4], 

many papers have been published which are either 

improvement of these or are a new approach for 

object detection. This paper is an attempt to study and 

compare all the major papers which were published 

in this field. This has helped us to understand object 

detection in a wholesome sense which is pivotal 

before applying any technique to solve a real-world 

problem. 
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